

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Aquablue at the Golden Mile

Hato Rey, Puerto Rico

Building Facts:

- 900,000 ft²
- 31 stories above grade
- total height = 276'
- approximate plan dimensions = 120' x 490'
- Construction dates: February 2007 August 2009
- Structural Engineer: DeSimone Consulting Engineers

Existing Structural System:

- foundation drilled piles beneath 10" concrete slab
- gravity system two-way, post-tensioned slabs
- lateral system 18" concrete shear walls
- 5" seismic joint

General Building Information

7-story parking structure + luxury apartments

Architectural Engineering

Senior Thesis 2008 - 2009

Typical Floor Plans

Parking Garage Level

- 51,900 ft²
- plan dimensions = 120' x 490'

Apartment Towers

- 11,600 ft² and 14,500 ft²
- plan dimensions = 90' x 160' and 90' x 200'

Features of Shear Walls:

- $f'_c = 8000 \text{ psi up to level } 13$
- $f'_c = 6000 \text{ psi above level } 13$
- Intricate construction process

Architectural Engineerin

Senior Thesis 2008 - 2009

Existing Shear Wall Design

Detailed integration of shear wall segments

Codes and References used for this design project:

- ACI 318-08 (American Concrete Institute)
- ASCE 7-05 (American Society of Civil Engineering)
- IBC 2006 (International Building Code)
- ETABS Nonlinear v9.2.0 (Computers and Structures, Inc.)
- pcaColumn v3.64 (Portland Cement Association)

The Pennsylvania State University

Architectural Engineerin

Senior Thesis 2008 - 2009

Codes and References

National Model Codes used by DeSimone Consulting Engineers:

- Puerto Rico Building Code 1999
- UBC 1997 (Uniform Building Code)
- ACI 318-99 ("Building Code Requirements for Structural Concrete")
- ACI 530-99 ("Building Code Requirements for Masonry Structures")
- SJI 1994 (Steel Joist Institute)

Overview of Project Proposal:

- Lateral force analysis
- Shear wall and coupling beam re-design
- Reinforcement design
- ETABS and pcaColumn analysis
- Architectural breadth study
- Construction Management breadth study

Project Goals:

- Detailed analysis of lateral loads
- Concrete shear wall design (ACI 318-08 building code)
- Computer modeling as a means of structural analysis
- Architectural impact of structural design

Proposal and Project Goals

Hato Rey Central, PR

Ideas for Shear Wall Re-design:

- Two I-shaped shear walls with connecting coupling beams
- More regular and efficient shape
- Minor architectural impact
- Reinforcement design

Architectural Engineering

Senior Thesis 2008 - 2009

Proposed Shear Wall Design

- Hand calculations + computer modeling for analysis
- Focus on the core of one tower

Preliminary Sketch (N.T.S.)

Wind Analysis:

- ASCE 7-05 (Chapter 6)
- Analytical Procedure (Method 2)
- Basic Wind Speed, V = 145 mph
- Importance Factor, I = 1.0
- Exposure Category = B
- Special Wind Cases

Lateral Design Loads

Seismic Analysis:

- ASCE 7-05 (Chapters 11 and 12)
- Equivalent Lateral Force Procedure
- Importance Factor, I = 1.0
- Seismic Design Category = D
- Response Modification Coefficient, R = 6
- Fundamental Period, T = 2.031
- Seismic Response Coefficient, C_s = 0.0165

Fhe Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Hato Rey, Puerto Rico

Lateral Design Loads

Equation variables:

Preliminary Shear Wall Thicknesses

Architectural Engineering

Senior Thesis 2008 - 2009

ETABS Model

Design Assumptions:

- Same concrete strength as original building
- 'User-defined' loads
- Rigid floor diaphragms with assigned masses
- Meshed walls with 0.7 multiplier for moment of inertia
- 18" wide x 19.5" deep coupling beams with reduced moment of inertia

Seismic Joint

Final Shear Wall Thicknesses:

- 18" 30" thickness
- parking levels

Architectural Engineering

ETABS Model

Check for horizontal structural irregularity:

- Extreme torsional irregularity
- Torsional amplification factor, A_x = 1.46
- Accidental eccentricity ratio = 0.073

Drift limitations:

- L/400 for wind loads (0.70W permitted by section CC.1.2 of ASCE 7-05)
- 0.020h for seismic loads
- Deflection amplification factor, C_d = 5 (seismic drifts)
- Drifts within the required limits
- Maximum drift at level 7 = 1.06" (assumed that seismic joint is adequate)

Drift Analysis

Code Requirements

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Drift Analysis

Drift Analysis for Wind

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Drift Analysis

Drift Analysis for Seismic

The Pennsylvania State University

Architectural Engineerin

Senior Thesis 2008 - 2009

Coupling Beam Feasibility Test

Equation variables:

- V_u = factored shear force in the beam
 - 1.2D + 0.5L + 1.6W
 - 0.9D + 1.6W
 - 1.32D + 0.5L + 1.0E
 - 0.78D + 1.0E
- $\lambda = 1$ (normal weight concrete)
- A_{cw} = cross-sectional area of the beam

Results:

- Diagonal reinforcement is not required
- Beam depths are feasible

(12(wind)) (4(seismic

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Coupling Beam Feasibility Test

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Coupling Beam Feasibility Test

Design process:

- (2) curtains for both transverse and longitudinal reinforcement

$$\phi V_{\rm n} = \phi A_{cv} (\alpha_c \lambda \sqrt{f_c})$$

$$\phi V_n = \phi (2\lambda \sqrt{f_c'} t_w d + A_{s,t} f_y d)$$

Architectural Engineering

Senior Thesis 2008 - 2009

Shear Wall Reinforcement

Transverse (horizontal) Longitudinal (vertical)

SW1 and SW2 reinforcement

(2) #5 @ 10"

(2) #5 @ 8"

(2) #7 @ 8"

(2) #5 @ 12"

reinforcement

Preliminary design according to seismic provisions of ACI 318-08, chapter 21

Reinforcement checked for wind loads using ACI 318-08, chapter 11

14 to sky lobby

Level

4 to 13

2 to 3

'	+	0	f)
	I	P_t	J _y)

		SW3 and SW4
d/s	2 to sky lobby	(2) #5 @ 12"

	SW5 and SW6 reinforcement		
20 to sky lobby	(2) #5 @ 12"	(2) #5 @ 10"	
16 to 19	(2) #5 @ 8"	(2) #5 @ 6"	
2 to 15	(2) #7 @ 8"	(2) #7 @ 6"	

(2) #5 @ 12"

(2) #5 @ 9"

(2) #7 @ 9"

Check in pcaColumn:

- - for level 9

Architectural Engineerin

Senior Thesis 2008 - 2009

Shear Wall Reinforcement

Shear wall design checked in pcaColumn

#5 bars at either 8" or 12" spacing #9 bars for the boundary elements

pcaColumn

Shear Wall Reinforcement

Longitudinal reinforcement design:

- Minimum steel area from chapters 10 and 21 of ACI 318-08
- Area of steel for 6 ksi strength concrete
- Area of steel for 8 ksi strength concrete
- Generally, (6) (10) #7 bars at both the top and bottom of the beams sufficed Reinforcement ratio below 0.025 (acceptable)

Level
9 to sky lobby
7 to 8
5 to 6
3 to 4
2

Architectural Engineerin

Senior Thesis 2008 - 2009

Coupling Beam Reinforcement

$$A_{s} = \frac{m_{u}}{4.17d}$$

M

 $A_{s} = \frac{M_{u}}{4.25d}$

CB1
Required
Reinforcement (top
and bottom)
(10) #7
(8) #7
(6) #7
(4) #7
(2) #7

	CB2
	Required
Level	Reinforcement (top
	and bottom)
11 to roof level	(8) #7
6 to 10	(6) #7
3 to 5	(4) #7
2	(2) #7

Longitudinal Reinforcement

Stirrup reinforcement design:

- Shear capacity of concrete neglected
- Required steel area determined by chapters 11 and 21 of ACI 318-08
- (3) (4) legs of #3 stirrups in each beam
- 2" spacing at supports
- 4" spacing throughout beam

Architectural Engineerin

Senior Thesis 2008 - 2009

Coupling Beam Reinforcement

Stirrup Reinforcement

Original foundation:

- - Compression capacity = 200 tons (170 total piles)
 - Lateral capacity = 20 tons (170 total piles)
 - Tension capacity = 40 tons (23 tension piles)
- Mat slab under group of columns and shear walls

Analysis of lateral capacity:

- Maximum factored base shear determined Force converted to number of required piles No change necessary for existing design

Architectural Engineerin

Senior Thesis 2008 - 2009

Impact on Existing Foundation

Required Piles =

Drilled compression piles (147) and drilled tension piles (23)

	East-West Direction	North-South Direction
5) 5	Total Shear (k)	Total Shear (k)
Wind Case 1a	0.8	1961.8
Wind Case 1b	2951.6	304.0
Wind Case 2a	151.9	1472.4
Wind Case 2b	2183.1	183.9
Wind Case 3	2214.2	1466.1
Wind Case 4	1630.9	1102.0
Seismic - NS	9.7	932.1
Seismic - EW	540.7	75.9
Total Shear (tons) =	1475.8	980.9

73.8

Base Shear Analysis

49.0

Analysis of tension capacity:

- Maximum factored overturning moment determined
- Moment divided by wall length for tension force at extreme fiber
- Force converted to number of required piles
- Approximately 33 required piles unnecessary due to gravity load effects
- 56 piles still required (convert 33 compression piles to tension piles)

Architectural Engineering

Senior Thesis 2008 - 2009

Impact on Existing Foundation

	Base Moment (k-ft)	Tension Force (k)	Tension Force (tons)	Number of Required Piles
Wind Case 1a	182637.4	7092.7	3546.4	88.7
Wind Case 1b	33349.4	1295.1	647.6	16.2
Wind Case 2a	136919.1	5317.2	2658.6	66.5
Wind Case 2b	23847.2	926.1	463.1	11.6
Wind Case 3	138366.3	5373.4	2686.7	67.2
Wind Case 4	103416.1	4016.2	2008.1	50.2
Seismic - NS	96733.5	3756.6	1878.3	47.0
Seismic - EW	8881.0	344.9	172.4	4.3

Overturning Analysis

Impact of New Shear Wall Design on the Existing Architecture:

- More narrow bedroom windows

Architectural Engineering

Senior Thesis 2008 - 2009

Architectural Breadth Study

Elimination of two columns of existing windows

New Shear Wall Design

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Architectural Breadth Study

Impact of New Shear Wall Design on the Existing Architecture:

• Elimination of two columns of existing

windows

Architectural Breadth Study

Impact of New Shear Wall Design on the Existing Architecture:

Additional Floor Space

	Original Shear Wall Design	New Shear Wall Design	
evel	Percentage of Floor Area (%)	Percentage of Floor Area (%)	Floor Area Gained in New Design (ft ²)
ky lobby oof level	4.47	4.56	-4.0
.7 - roof level	1.75	1.60	20.3
4 – 16	2.14	2.23	-10.0
3 – 13	2.14	2.45	-34.8
8 – 7	1.88	1.72	38.6
	2.08	1.72	83.9

design experience was gained:

- Completion of lateral analysis
- Use of ETABS for modeling purposes

Architectural Engineering

Conclusions

- The project was a success because the initial goals were met and valuable

 - Familiarity with the ACI 318-08 design code
 - Study of architectural impact

Opportunity for further study – Dynamic analysis of the structure

The following people need to be recognized for their assistance in the completion of this senior thesis project. Collectively, they provided technical expertise, general engineering consulting, patience and support throughout the year.

- Dr. Andres Lepage (structural advisor)
- Professor Kevin Parfitt (general thesis advisor)
- Professor Robert Holland (general thesis advisor)
- Anh Trong Nguyen (project structural engineer)
- Architectural Engineering Peers
- Family and Friends

Acknowledgements

The Pennsylvania State University

Architectural Engineering

Senior Thesis 2008 - 2009

Questions?